Stable Gauged Maps

نویسندگان

  • EDUARDO GONZÁLEZ
  • PABLO SOLIS
  • CHRIS T. WOODWARD
چکیده

We give an introduction to moduli stacks of gauged maps satisfying a stability conditition introduced by Mundet [55] and Schmitt [61], and the associated integrals giving rise to gauged Gromov-Witten invariants. We survey various applications to cohomological and Ktheoretic Gromov-Witten invariants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Properness for Scaled Gauged Maps

We prove properness of moduli stacks of gauged maps satisfying a stability conditition introduced by Mundet [42] and Schmitt [48]. The proof combines a git construction of Schmitt [48], properness for twisted stable maps by Abramovich-Vistoli [1], a variation of a boundedness argument due to Ciocan-Fontanine-Kim-Maulik [13], and a removal of singularities for bundles on surfaces in Colliot-Thél...

متن کامل

with Forest Type Maps

Fragmentation of forest types is an indicator of biodiversity in the Montreal Process, but the available national data permit assessment of only overall forestland fragmentation, not forest type fragmentation. Here we illustrate how to localize national statistics from the 2003 National Report on Sustainable Forests by combining state vegetation maps with national forestland fragmentation maps....

متن کامل

Se p 19 97 Topologically stable soliton in the U ( 1 ) gauged Skyrme model

We use a particular prescription to gauge an S3 model with a U(1) Maxwell field. This model reverts to the usual Skyrme model in the limit of the gauge coupling constant vanishing. We show that static solutions exists and that they are topologicaly stable. Because of our gauging prescription they have an axial symmetry. They are not charged, but have a non-zero magnetic fields. The energy of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016